Research on Multi-robot Path Planning Methods Based on Learning Classifier System with Gradient Descent Methods
نویسندگان
چکیده
This paper deals with the problem of multi-robot path planning based on learning classifier system in a dynamic narrow environment, where the workspace is cluttered with unpredictably moving objects. A Learning Classifier System is an accuracy-based machine learning system with gradient descent that combines reinforcement learning and rule discovery system. The genetic algorithm and the covering operator act as innovation discovery components which are responsible for discovering new better path planning rules. The reinforcement learning component is responsible for adjusting the fitness of rules in the system according to some reward obtained from the environment. The advantage of this approach is its accuracy-based representation, which can easily reduce learning space, improve online learning ability and robot robustness.
منابع مشابه
Multi-robot Reinforcement Learning Based On Learning Classifier System with Gradient Descent Methods
This paper proposed a robot reinforcement learning method based on learning classifier system. A Learning Classifier System is a accuracy-based machine learning system with gradient descent that combines reinforcement learning and rule discovery system. The genetic algorithm and the covering operator act as innovation discovery components which are responsible for discovering new better reinfor...
متن کاملDecentralized Path Planning for Coverage Tasks Using Gradient Descent Adaptive Control Decentralized Path Planning for Coverage Tasks Using Gradient Descent Adaptive Control
In this paper we propose a new path planning algorithm for coverage tasks in unknown environments that does not rely on recursive search optimization. Given a sensory function that captures the interesting locations in the environment and can be learned, the goal is to compute a set of closed paths that allows a single robot or a multi-robot system to sense/cover the environment according to th...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملForward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملDecentralized path planning for coverage tasks using gradient descent adaptive control
In this paper we propose a new path planning algorithm for coverage tasks in unknown environments that does not rely on recursive search optimization. Given a sensory function that captures the interesting locations in the environment and can be learned, the goal is to compute a set of closed paths that allows a single robot or a multirobot system to sense/cover the environment according to thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012